
EE 2030 Linear Algebra Spring 2010

Solution to Homework Assignment No. 5

1. (a) From the cofactor formula, we can have detA = 3 and

(
A−1

)
11

=
C11

detA
=

∣∣∣∣ 3 0
7 1

∣∣∣∣
3

= 1

(
A−1

)
12

=
C21

detA
=

−
∣∣∣∣ 2 0
7 1

∣∣∣∣
3

= −2

3

(
A−1

)
13

=
C31

detA
=

∣∣∣∣ 2 0
3 0

∣∣∣∣
3

= 0

(
A−1

)
21

=
C12

detA
=

−
∣∣∣∣ 0 0
0 1

∣∣∣∣
3

= 0

(
A−1

)
22

=
C22

detA
=

∣∣∣∣ 1 0
0 1

∣∣∣∣
3

=
1

3

(
A−1

)
23

=
C32

detA
=

−
∣∣∣∣ 1 0
0 0

∣∣∣∣
3

= 0

(
A−1

)
31

=
C13

detA
=

∣∣∣∣ 0 3
0 7

∣∣∣∣
3

= 0

(
A−1

)
32

=
C23

detA
=

−
∣∣∣∣ 1 2
0 7

∣∣∣∣
3

= −7

3

(
A−1

)
33

=
C33

detA
=

∣∣∣∣ 1 2
0 3

∣∣∣∣
3

= 1.

Therefore, we can obtain the inverse of A as

A−1 =
1

3

 3 −2 0
0 1 0
0 −7 3

 .

(b) Since the matrix A is symmetric, the inverse of A is also symmetric. Then



from the cofactor formula, we can have detA = 4 and

(
A−1

)
11

=
C11

detA
=

∣∣∣∣ 2 −1
−1 2

∣∣∣∣
4

=
3

4

(
A−1

)
21

=
C12

detA
=

−
∣∣∣∣ −1 −1

0 2

∣∣∣∣
4

=
1

2

(
A−1

)
22

=
C22

detA
=

∣∣∣∣ 2 0
0 2

∣∣∣∣
4

= 1

(
A−1

)
31

=
C13

detA
=

∣∣∣∣ −1 2
0 −1

∣∣∣∣
4

=
1

4

(
A−1

)
32

=
C23

detA
=

−
∣∣∣∣ 2 −1
0 −1

∣∣∣∣
4

=
1

2

(
A−1

)
33

=
C33

detA
=

∣∣∣∣ 2 −1
−1 2

∣∣∣∣
4

=
3

4

Therefore, we can obtain the inverse of A as

A−1 =
1

4

 3 2 1
2 4 2
1 2 3

 .

2. Since the Hadamard matrix H has orthogonal rows, the box is a hypercube and
the volume is the multiplication of the lengths of the row vectors. And we know
that every row vector has equal length which is

√
12 + 12 + 12 + 12 = 2. Therefore,

|detH| = 24 = 16.

3. We know that

det (A− λI)

=

∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
...

. . .
...

...
. . .

...
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣∣∣
= (λ1 − λ) (λ2 − λ) . . . (λn − λ) .

The only term in the big formula for det(A− λI) which contains the λn−1 terms
is (a11 − λ) (a22 − λ) . . . (ann − λ). Hence, the coefficient of λn−1 in det(A−λI) is

(−1)n−1 (a11 + a12 + . . .+ ann) = (−1)n−1 trace (A) .
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On the other hand, the coefficient of λn−1 in (λ1 − λ) (λ2 − λ) . . . (λn − λ) is

(−1)n−1 (λ1 + λ2 + . . .+ λn) .

Therefore,
λ1 + λ2 + . . .+ λn = trace (A) .

4. (a) Let uk =

[
Gk+1

Gk

]
. The relation between uk+1 =

[
Gk+2

Gk+1

]
and uk =[

Gk+1

Gk

]
is given by

uk+1 =

[
Gk+2

Gk+1

]
=

[
1
2
Gk+1 +

1
2
Gk

Gk+1

]
=

[
1/2 1/2
1 0

] [
Gk+1

Gk

]
= Auk.

Then we have uk = Auk−1 = AAuk−2 = A2uk−2 = Aku0. To find Ak, we
first find the eigenvalues of A.

det (A− λI) =

∣∣∣∣ 1
2
− λ 1

2

1 −λ

∣∣∣∣
= λ2 − 1

2
λ− 1

2

= (λ− 1)

(
λ+

1

2

)
= 0

=⇒ λ = 1,−1/2.

For λ1 = 1,

A− λ1I =

[
−1/2 1/2
1 −1

]
and the corresponding eigenvector is

x1 =

[
1
1

]
.

For λ2 = −1/2,

A− λ2I =

[
1 1/2
1 1/2

]
and the corresponding eigenvector is

x2 =

[
−1/2
1

]
.

Therefore, we have

A = SΛS−1 =

[
1 −1/2
1 1

] [
1 0
0 −1/2

] [
1 −1/2
1 1

]−1

.

Then we write u0 as a linear combination of x1 and x2 as follows:

u0 =

[
G1

G0

]
=

[
1
0

]
=

[
1 −1/2
1 1

] [
c1
c2

]
3



=⇒
[
c1
c2

]
=

[
2/3
−2/3

]
=⇒ u0 =

2

3
x1 −

2

3
x2.

Then we can obtain

uk = Aku0

= Ak

(
2

3
x1 −

2

3
x2

)
=

2

3

(
1kx1 −

(
−1

2

)k

x2

)

=
2

3

([
1
1

]
−
(
−1

2

)k [ −1/2
1

])

=

[
Gk+1

Gk

]
.

Therefore, we can have

Gk =
2

3
− 2

3

(
−1

2

)k

for k ≥ 0.

(b) When k goes to infinity, the term (−1/2)k goes to zero. Therefore, we can
obtain

lim
k→∞

Gk = lim
k→∞

(
2

3
− 2

3

(
−1

2

)k
)

=
2

3
.

5. (a) To diagonalize the matrix A, we first find the eigenvalues of A:

det (A− λI) =

∣∣∣∣ 2− λ −1
−1 2− λ

∣∣∣∣
= (2− λ)2 − 1

= (λ− 1) (λ− 3) = 0.

Then we can obtain λ = 1, 3. For λ1 = 1,

A− λ1I =

[
1 −1
−1 1

]
and the corresponding eigenvector is

x1 =

[
1
1

]
.

For λ2 = 3,

A− λ2I =

[
−1 −1
−1 −1

]
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and the corresponding eigenvector is

x2

[
1
−1

]
.

Then we can have

S = [x1 x2] =

[
1 1
1 −1

]
and the inverse of S given by

S−1 =
1

2

[
1 1
1 −1

]
.

Therefore, the matrix A can be diagonalized as

A = SΛS−1 =

[
1 1
1 −1

] [
1 0
0 3

] [
1/2 1/2
1/2 −1/2

]
.

(b) We now have

Ak = SΛkS−1

=

[
1 1
1 −1

] [
1 0
0 3

]k [
1/2 1/2
1/2 −1/2

]
=

1

2

[
1 1
1 −1

] [
1 0
0 3k

] [
1 1
1 −1

]
=

1

2

[
1 1
1 −1

] [
1 1
3k −3k

]
=

1

2

[
1 + 3k 1− 3k

1− 3k 1 + 3k

]
.

6. To find an orthogonal matrix Q, we first find the eigenvalues of the matrix

A =

 2 2 2
2 0 0
2 0 0

 .

det (A− λI) =

∣∣∣∣∣∣
2− λ 2 2
2 −λ 0
2 0 −λ

∣∣∣∣∣∣
= λ2 (2− λ) + 4λ+ 4λ

= −λ3 + 2λ2 + 8λ

= −λ (λ− 4) (λ+ 2) = 0.

Therefore, we have λ = 4,−2, 0. For λ1 = 4, we have

A− λ1I =

 −2 2 2
2 −4 0
2 0 −4

 .
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Then we can obtain the unit eigenvector

x1 =
1√
6

 2
1
1

 .

Similarly, for λ2 = −2, we have

A− λ2I =

 4 2 2
2 2 0
2 0 2


and the corresponding unit eigenvector

x2 =
1√
3

 −1
1
1

 .

For λ3 = 0, we have

A− λ3I =

 2 2 2
2 0 0
2 0 0


and the corresponding unit eigenvector

x3 =
1√
2

 0
1
−1

 .

We can check the orthogonality between eigenvectors:

xT
1 x2 =

1

3
√
2

[
2 1 1

]  −1
1
1

 = 0

xT
2 x3 =

1√
6

[
−1 1 1

]  0
1
−1

 = 0

xT
1 x3 =

1

2
√
3

[
2 1 1

]  0
1
−1

 = 0.

Therefore, we can obtain an orthogonal matrix given by

Q =
1√
6

 2 −
√
2 0

1
√
2

√
3

1
√
2 −

√
3

 .

7. (a) Suppose Ax = λx. Then we can take the complex conjugate on both sides
and obtain

Ax = λx =⇒ Ax = λx.
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Since A is real, we have A = A. Then we have the following relations:

Ax = λx

=⇒ xTAT = λxT

=⇒ xTA = −λxT .

The last equation is true since A is skew-symmetric. Consider xTAx, and
we have

xT (Ax) = xT (λx) = λxTx = λ∥x∥2

and (
xTA

)
x =

(
−λxT

)
x = −λ

(
xTx

)
= −λ∥x∥2.

Hence, we can have
λ = −λ.

Therefore, a real skew-symmetric matrix has pure imaginary eigenvalues.

(b) Suppose λ is any eigenvalue of A and x is a corresponding unit eigenvector.
Then we have

Ax = λx.

It follows that
∥Ax∥2 = ∥λx∥2 = |λ|2∥x∥2 = |λ|2.

Also,

∥Ax∥2 =
(
Ax
)T

(Ax) = xTA
T
Ax = xTATAx = xTIx = ∥x∥2 = 1

since A is an orthogonal matrix and ATA = I. Then we can have |λ|2 = 1,
yielding

|λ| = 1.

(c) Since A is a real skew-symmetric matrix and ATA = I, we know that A
has all pure imaginary eigenvalues with |λ| = 1 from parts (a) and (b). Also,
observe that the trace of A is zero. From Problem 3, we know that the
sum of all eigenvalues of A is zero. Therefore, the four eigenvalues of A are
i, i,−i,−i.

8. (a) We have

xTAx = 2
(
x2
1 + x2

2 + x2
3 − x1x2 − x2x3

)
= 2x2

1 + 2x2
2 + 2x2

3−x1x2−x2x1−x2x3−x3x2.

By inspection, we can obtain the symmetric matrix

A =

 2 −1 0
−1 2 −1
0 −1 2

 .
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To check whether A is positive definite, we compute the eigenvalues of A.

det (A− λI) =

∣∣∣∣∣∣
2− λ −1 0
−1 2− λ −1
0 −1 2− λ

∣∣∣∣∣∣
= (2− λ)

(
λ2 − 4λ+ 2

)
= 0

=⇒ λ = 2, 2 +
√
2, 2−

√
2.

Since all eigenvalues are positive, A is positive definite.

(b) We have

xTBx = 2
(
x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3

)
= 2x2

1 + 2x2
2 + 2x2

3−x1x2−x2x1 − x1x3 − x3x1−x2x3−x3x2.

By inspection, we can obtain the symmetric matrix

B =

 2 −1 −1
−1 2 −1
−1 −1 2

 .

To check whether B is semidefinite, we compute the eigenvalues of B.

det (B − λI) =

∣∣∣∣∣∣
2− λ −1 −1
−1 2− λ −1
−1 −1 2− λ

∣∣∣∣∣∣
= −λ (λ− 3)2 = 0

=⇒ λ = 3, 3, 0.

Since all eigenvalues are nonnegative, B is positive semidefinite.

9. Let A =

[
1 1/2
1/2 1

]
. Then

xTAx = x2 + xy + y2

where x =

[
x
y

]
. By the spectral theorem,

A = QΛQT =
1√
2

[
1 1
−1 1

] [
1/2 0
0 3/2

]
1√
2

[
1 −1
1 1

]
.

Then we have

xTAx =
(
QTx

)T
Λ
(
QTx

)
=

[
x− y√

2

x+ y√
2

] [
1/2 0
0 3/2

]
x− y√

2
x+ y√

2


=

1

2

(
x− y√

2

)2

+
3

2

(
x+ y√

2

)2

=
1

2
X2 +

3

2
Y 2
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2

2
3

1 1
2( , )

2 2

−

 2

1
,

2

1

3

2

where X = (x− y) /
√
2 and Y = (x+ y) /

√
2. The equation can be rewritten as

X2

2
+

Y 2

(2/3)
= 1.

Then we can obtain the half-lengths of its axes are
√
2,
√
2/3.

The tilted ellipse is drawn as above.

10. We can find the eigenvalues of each matrix as follows.[
1 0
0 1

]
: λ = 1, 1[

0 1
1 0

]
: λ = 1,−1[

1 1
0 0

]
: λ = 0, 1[

0 0
1 1

]
: λ = 0, 1[

1 0
1 0

]
: λ = 0, 1[

0 1
0 1

]
: λ = 0, 1.

Since all 2 × 2 matrices with eigenvalues 1 and 0 are similar to each other, the
following matrices are similar:[

1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 0
1 0

]
,

[
0 1
0 1

]
.
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The matrices [
1 0
0 1

]
,

[
0 1
1 0

]
are similar to themselves.

11. (a) We have

ATA =

[
10 20
20 40

]
.

Then

0 = det
(
ATA− λI

)
=

∣∣∣∣ 10− λ 20
20 40− λ

∣∣∣∣ = λ (λ− 50) =⇒ λ = 50, 0.

For λ1 = 50, the corresponding unit eigenvector is v1 =
1√
5

[
1
2

]
.

For λ2 = 0, the corresponding unit eigenvector is v2 =
1√
5

[
2
−1

]
.

(b) Since σ1 =
√
λ1, we have σ1 = 5

√
2. Then we can find

u1 =
Av1

σ1

=

[
1 2
3 6

]
1√
5

[
1
2

]
5
√
2

=
1√
10

[
1
3

]
.

Now we verify that u1 is a unit eigenvector of AAT as follows:

(
AAT

)
u1 =

[
5 15
15 45

]
1√
10

[
1
3

]
=

1√
10

[
50
150

]
= 50u1

∥u1∥2 = uT
1u1 =

1

10

[
1 3

] [ 1
3

]
= 1.

(c) For λ2 = 0, we can find a unit eigenvector for AAT as

u2 =
1√
10

[
3
−1

]
.

Therefore, we have
A = UΣV T

where

U =
1√
10

[
1 3
3 −1

]
Σ =

[
5
√
2 0

0 0

]
V =

1√
5

[
1 2
2 −1

]
.

10



12. (a) We have

ATA =

 2 −1 0
−1 2 −1
0 −1 2

 .

Let

v1 =
1√
2

 sin π/4
sin 2π/4
sin 3π/4

 =

 1/2

1/
√
2

1/2


v2 =

1√
2

 sin 2π/4
sin 4π/4
sin 6π/4

 =

 1/
√
2

0

−1/
√
2


v3 =

1√
2

 sin 3π/4
sin 6π/4
sin 9π/4

 =

 1/2

−1/
√
2

1/2

 .

Then we can have

ATAv1 =

 2 −1 0
−1 2 −1
0 −1 2

 1/2

1/
√
2

1/2

 =

 1− 1√
2

−1 +
√
2

1− 1√
2

 =
(
2−

√
2
) 1/2

1/
√
2

1/2

 = λ1v1

ATAv2 =

 2 −1 0
−1 2 −1
0 −1 2

 1/
√
2

0

−1/
√
2

 =

 √
2
0

−
√
2

 = 2

 1/
√
2

0

−1/
√
2

 = λ2v2

ATAv3 =

 2 −1 0
−1 2 −1
0 −1 2

 1/2

−1/
√
2

1/2

 =

 1 + 1√
2

−1−
√
2

1 + 1√
2

 =
(
2 +

√
2
) 1/2

−1/
√
2

1/2

 = λ3v3.

Therefore, the columns of V have ATAv = λv with λ = 2−
√
2, 2, 2 +

√
2.

(b) We can have

AV =


1 0 0
−1 1 0
0 −1 1
0 0 −1




1
2

1√
2

1
2

1√
2

0 −1√
2

1
2

−1√
2

1
2



=


1
2

1√
2

1
2

−1
2
+ 1√

2
− 1√

2
−1

2
− 1√

2
1
2
− 1√

2
− 1√

2
1
2
+ 1√

2

−1
2

1√
2

−1
2

 .
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Let AV = [x1 x2 x3]. Then we have

xT
1 x2 =

[
1
2

−1
2
+ 1√

2
1
2
− 1√

2
−1

2

]
1√
2

− 1√
2

− 1√
2

1√
2

 = 0

xT
2 x3 =

[
1√
2

− 1√
2

− 1√
2

1√
2

]
1
2

−1
2
− 1√

2
1
2
+ 1√

2

−1
2

 = 0

xT
1 x3 =

[
1
2

−1
2
+ 1√

2
1
2
− 1√

2
−1

2

]
1
2

−1
2
− 1√

2
1
2
+ 1√

2

−1
2

 = 0.

Therefore, the columns of AV are orthogonal.

(c) We have

AT =

 1 −1 0 0
0 1 −1 0
0 0 1 −1

 .

Perform Gaussian elimination as follows: 1 −1 0 0
0 1 −1 0
0 0 1 −1


=⇒

 1 0 −1 0
0 1 −1 0
0 0 1 −1


=⇒

 1 0 0 −1
0 1 0 −1
0 0 1 −1

 .

Then we can obtain

u4 =
1

2


1
1
1
1

 .
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(d) From parts (b) and (c), we have the vectors

u1 =
x1

σ1

=
x1√
λ1

=
1√

2−
√
2


1
2

−1
2
+ 1√

2
1
2
− 1√

2

−1
2

 =



1√
8−4

√
2√

2−
√
2

8

−
√

2−
√
2

8

− 1√
8−4

√
2

 =



√
4+2

√
2

4√
4−2

√
2

4

−
√

4−2
√
2

4

−
√

4+2
√
2

4



u2 =
x2

σ2

=
x2√
λ2

=
1√
2


1√
2

− 1√
2

− 1√
2

1√
2

 =


1
2

−1
2

−1
2

1
2



u3 =
x3

σ3

=
x3√
λ3

=
1√

2 +
√
2


1
2

−1
2
− 1√

2
1
2
+ 1√

2

−1
2

 =



1√
8+4

√
2

−
√

2+
√
2

8√
2+

√
2

8

− 1√
8+4

√
2

 =



√
4−2

√
2

4

−
√

4+2
√
2

4√
4+2

√
2

4

−
√

4−2
√
2

4



u4 =
1

2


1
1
1
1

 .

Therefore, we have A = UΣV T , where

U =



√
4+2

√
2

4
1
2

√
4−2

√
2

4
1
2√

4−2
√
2

4
−1

2
−
√

4+2
√
2

4
1
2

−
√

4−2
√
2

4
−1

2

√
4+2

√
2

4
1
2

−
√

4+2
√
2

4
1
2

−
√

4−2
√
2

4
1
2



Σ =


√
2−

√
2 0 0

0
√
2 0

0 0
√
2 +

√
2

0 0 0


V =


1
2

1√
2

1
2

1√
2

0 −1√
2

1
2

−1√
2

1
2

 .
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